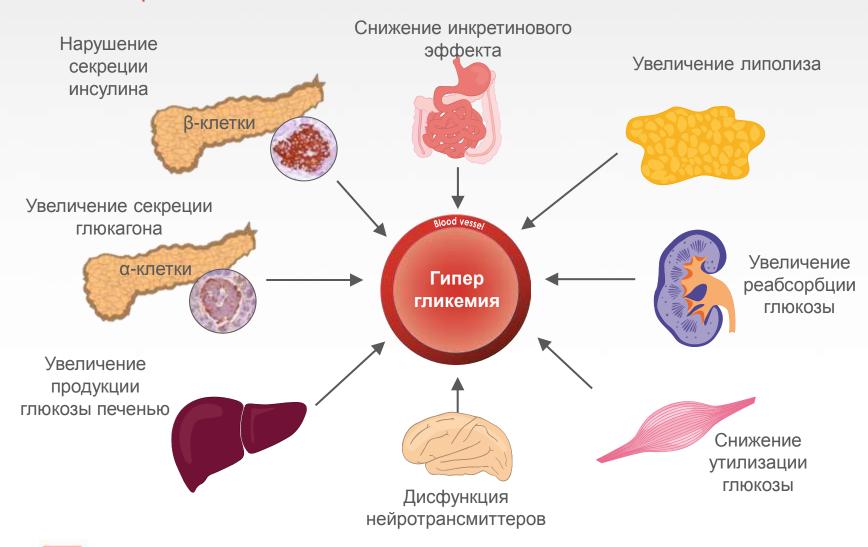
Современные представления о роли почек в гомеостазе глюкозы


д.б.н. Ковзун Е.И.

Доклад проводится при поддержке компании АстраЗенека

Представлена информация в рамках зарегистрированных в Украине показаний. Мнение лектора не всегда может совпадать с точкой зрения компании АстраЗенека

Патофизиологические механизмы гипергликемии 'Зловещий октет'

Нормальный гомеостаз глюкозы^{1,2}

Баланс ~0 г/сут

Поступление глюкозы ~250 г/сут:

- Питание ~180 г/сут
- Продукция глюкозы ~70 г/сут
 - Глюконеогенез
 - Гликогенолиз

Почки: фильтрация циркулирующей глюкозы

Фильтрация глюкозы ~180 г/сут

Потребление глюкозы ~250 г/сут:

- Головной мозг ~125 г/сут
- Другие ткани ~125 г/сут

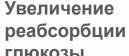
Почки: реабсорбция отфильтрованной глюкозы

Реабсорбция глюкозы ~180 г/сут

2. Gerich, JE. Diabetes Obes Metab 2000;2:345-50.

Нарушение обмена глюкозы на фоне СД 2

Поступление глюкозы >280 г/сут

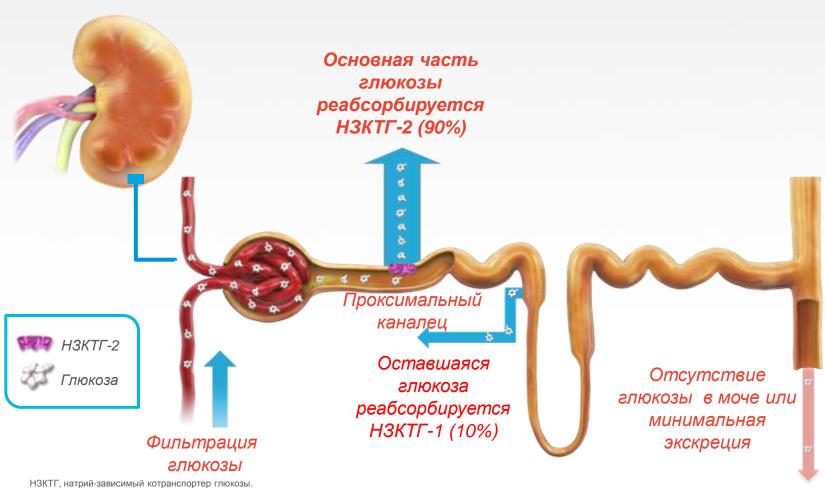

- Питание >180 г/сут
- Продукция глюкозы~100 г/сут
 - Глюконеогенез*
 - Гликогенолиз

Фильтрация глюкозы ~270 г/cym

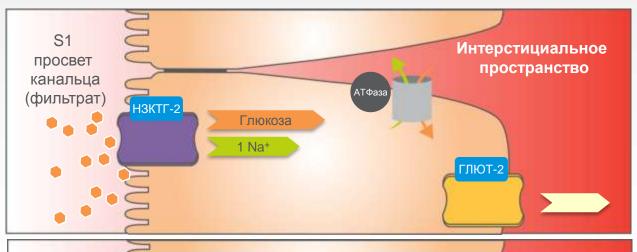
Потребление глюкозы >250 г/сут:

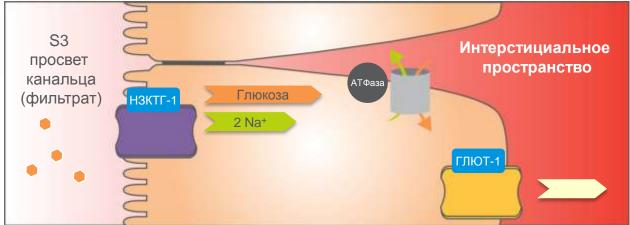
- Головной мозг ~125 г/сут
- Другие ткани >125 г/сут

При повышении почечного порога для реабсорбции глюкоза поступает в мочу (глюкозурия)


- 1. Gerich JE. Diabet Med 2010:27:136-42:
- 2. Abdul-Ghani MA. DeFronzo RA. Endocr Pract 2008:14:782-90.

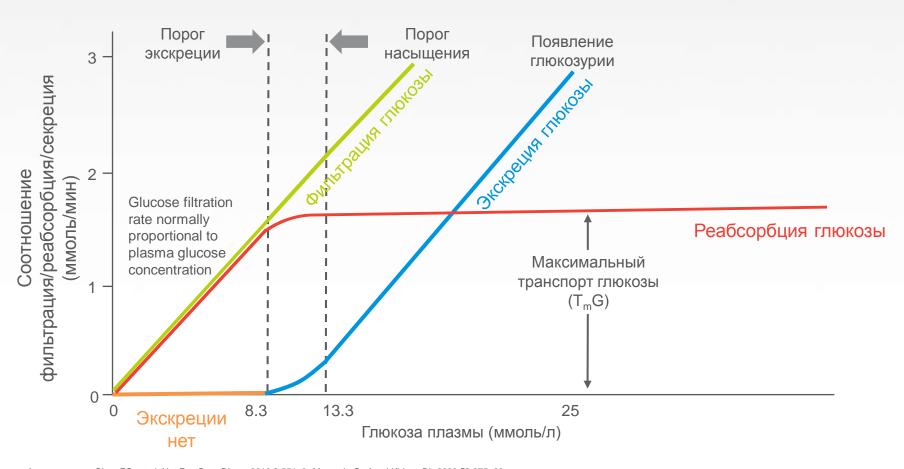
^{*}Elevated glucose production in patients with Type 2 diabetes attributed to hepatic and renal gluconeogenesis.2


Фильтрация и реабсорбция глюкозы в норме^{1–3}


1. Wright EM. Am J Physiol Renal Physiol 2001; 280:F10-18; 2. Lee YJ, et al. Kidney Int Suppl 2007; 106:S27-35; 3. Hummel CS, et al. Am J Physiol Cell Physiol 2011; 300:C14-21.

НЗКТГ и ГЛЮТ-зависимые механизмы транспорта глюкозы в проксимальных почечных канальцах

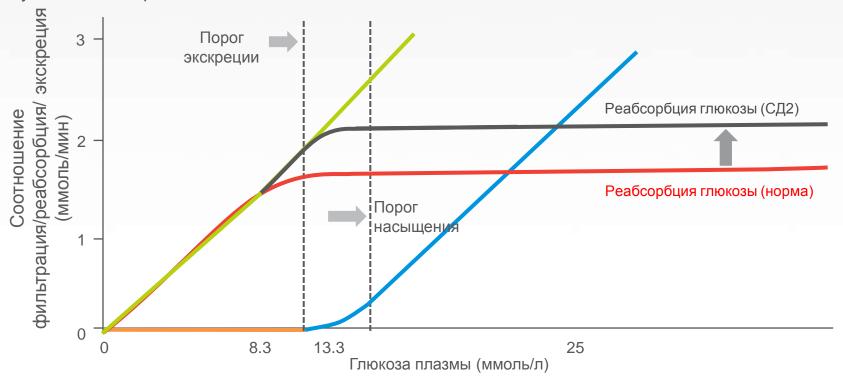
- Сродство к глюкозе низкое
- Емкость высокая



- Сродство к глюкозе высокое
- Емкость низкая

ГЛЮТ, транспортер глюкозы; НЗКТГ, натрий-зависимый котранспортер глюкозы. Адаптировано из: Wright EM. *Am J Physiol Renal Physiol* 2001;**280**:F10–18.

При достижении определенного порога глюкозы в плазме развивается глюкозурия



Адаптировано: Chao EC, et al. Nat Rev Drug Discov 2010;9:551–9; Marsenic O. Am J Kidney Dis 2009;53:875–83.

У пациентов с СД 2 реабсорбция глюкозы способствует поддержанию гипергликемии

- У пациентов с СД 2, несмотря на наличие гипергликемии реабсорбция глюкозы парадоксально увеличивается, приводя к поддержанию гипергликемии^{1,2}
- НЗКТГ-2 продолжают реабсорбировать глюкозу через инсулин-независимый путь даже в условиях гипергликемии ³

H3KTГ-2, натрий-зависимый котранспортер глюкозы. Adapted from: 1. Chao EC, et al. Nat Rev Drug Discov 2010; 9:551–9; 2. Marsenic O. Am J Kidney Dis 2009; 53:875–83; 3. Nair S & Wilding JPH. J Clin Endocrinol Metab 2010; 95:34–42.

Почему повышена реабсорбция глюкозы при СД 2 типа?

Повышение максимального порога транспорта глюкозы ≈ на 20%

Увеличение экспрессии НЗКТГ-2

Увеличение скорости реабсорбции и активности ГЛЮТ-2

Локализация НЗКТГ транспортеров в органах и тканях человека ^{1,2}

Транспортер	Преимущественная локализация	Функция
НЗКТГ-1	Тонкий кишечник, сердце, трахея и почки	Котранспорт натрия, глюкозы и галактозы через щеточную каемку кишечника и проксимальных почечных канальцев
НЗКТГ-2	Почки	Котранспорт натрия и глюкозы в S1сегменте проксимальных почечных канальцев
НЗКТГ-З	Тонкий кишечник, матка, легкие, щитовидная железа и яички	Транспорт натрия (не глюкозы)
НЗКТГ-4	Тонкий кишечник, почки, печень, желудок и легкие	Транспорт глюкозы и маннозы
НЗКТГ-5	Почки	Неизвестно
НЗКТГ-6	Головной мозг, почки, кишечник	Мио-инозитол, глюкоза

НЗКТГ, натрий-зависимый котранспортер глюкозы.

^{1.} Bays H. Curr Med Res Opin 2009;25:671-81. 2. Wright EM et al., Intern Med 2007; 261: 32-43

Состояния, ассоциированные с нарушением транспорта глюкозы

Транспортер	Ассоциированное состояние	Симптомы
НЗКТГ-2	Семейная почечная глюкозурия	Большинство пациентов не испытывают клинических проблем и симптомов
НЗКТГ-2	Синдром Фанкони-Бикеля	Многочисленные, в том числе увеличение печени, метеоризм и витамин-D-резистентный рахит
НЗКТГ-1	Синдром мальабсорбции глюкозы-галактозы	Тяжелая диарея
НЗКТГ-1	Болезнь Де Виво	Многочисленные, в том числе микроцефалия и задержка умственного и моторного развития

ГЛЮТ; транспортер глюкозы; НЗКТГ, натрий-зависимый котранспортер глюкозы. Адаптировано Bays H. *Curr Med Res Opin* 2009;**25**:671–81.

Семейная почечная глюкозурия(СПГ)

- Приводит к потере глюкозы с мочой до 134 г/сут без значимых клинических проявлений и последствий
- Выделяют 3 типа ренальной глюкозурии: А, В и 0

Тип А

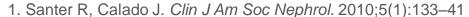
 Низкий почечный порог для глюкозы и низкая максимальная канальцевая реабсорбция глюкозы

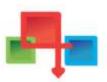
Тип В

• Низкий почечный порог для глюкозы и нормальная максимальная канальцевая реабсорбция глюкозы

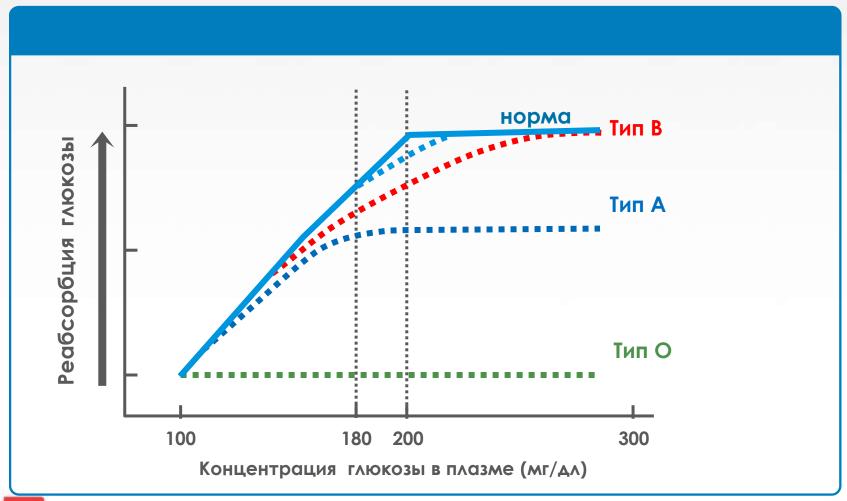
Тип 0

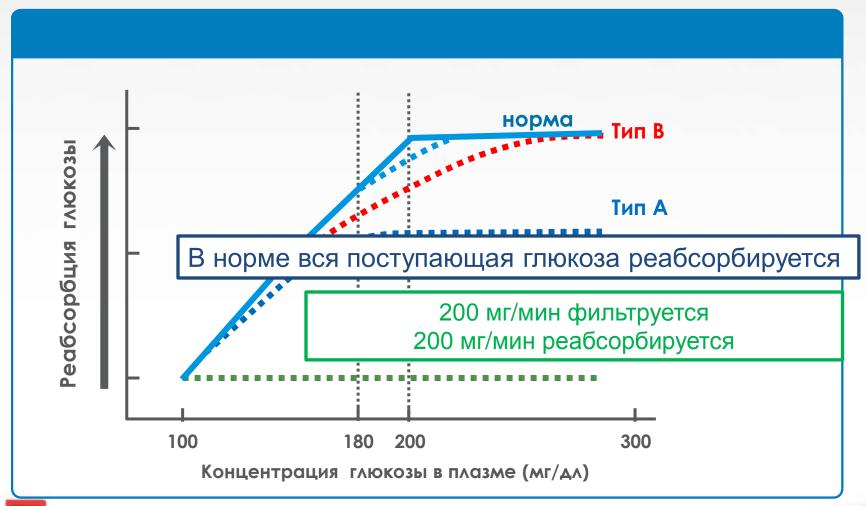
• Полное отсутствие почечного транспорта глюкозы


Santer R, et al. Clin J Am Soc Nephrol 2010;5:133-41.


Потери глюкозы при СПГ

	Потери глюкозы с мочой
Норма ¹	<0,5 г/сут
Почечная глюкозурия ²	1–170 г/сут




2. Wright EM, et al. J Intern Med. 2007;261(1):32-43

Семейная почечная глюкозурия приводит к выведению в среднем 134 г/сут без клинически значимых последствий

Семейная почечная глюкозурия приводит к выведению в среднем 134 г/сут без клинически значимых последствий

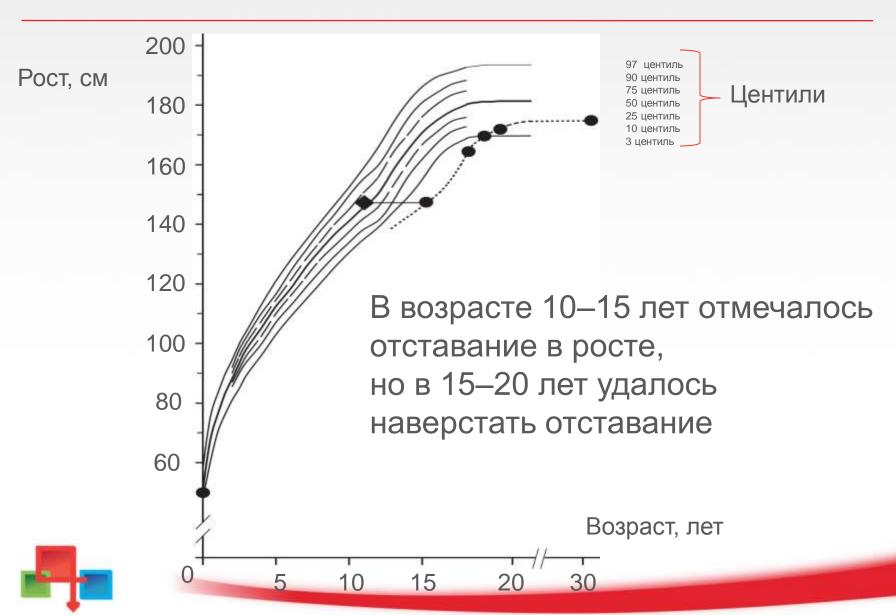
Семейная почечная глюкозурия приводит к выведению в среднем 134 г/сут без клинически значимых последствий

Безопасность хронической глюкозурии для канальцев почек и мочевыводящей системы

- Пациенты с семейной почечной глюкозурией (ПГ) идеальная модель для изучения влияния глюкозурии (при отсутствии гипергликемии) на функцию мочевыделительной системы
- Наблюдение пациентов с наиболее тяжелой формой ПГ (типом О) позволяет увидеть эффекты при экстремальных условиях

Клинический случай ПГ типа О

- Пациент (31 лет) в немецкой семье, родился в Румынии
- Глюкозурия впервые выявлена в возрасте 11 лет
- В 15 лет глюкозурия 109—141 г/сут (потеря 436—564 ккал/сут)
- В 31 год ежедневное потребление 3–5 л жидкости


Клинический случай ПГ типа О

Обследование в возрасте 31 года

Bec	74 кг
Рост	175 см
Артериальное давление	125/85 мм рт.ст.
Na+, K+, Ca+2, HPO ₄ -,креатинин	135/4,4/102/2,31/1,21 (ммоль/л); 57 (мкмоль/л)
Белок в моче	0,03 г/л
Альбумин в моче	0,002 г/л

Клинический случай СПГ типа О

Вывод

Таким образом, можно констатировать, что хроническая
глюкозурия сама по себе (без гипергликемии) оказывает
незначимое влияние на работу почек и может быть фактором
задержки в росте в подростковом периоде из-за большой потери
калорий.

